Nowhere zero flows in graphs

Bill Jackson School of Mathematical Sciences QMUL

Information Flows and Information Bottlenecks, Queen Mary, September 11-12, 2012

Nowhere zero Γ-flows

Let \vec{G} be a directed graph and Γ be an abelian group. Then a **nowhere zero** Γ -flow for \vec{G} is an assignment of the nonzero elements of Γ to the edges of \vec{G} such that the net flow entering each vertex is zero.

Nowhere zero Γ-flows

Let \vec{G} be a directed graph and Γ be an abelian group. Then a **nowhere zero** Γ -**flow** for \vec{G} is an assignment of the nonzero elements of Γ to the edges of \vec{G} such that the net flow entering each vertex is zero.

Lemma (Tutte, 1950)

Let G be a graph and Γ be an abelian group. Then \vec{G} has a nowhere zero Γ -flow for some orientation \vec{G} of G if and only if \vec{G} has a nowhere zero Λ -flow for all orientations \vec{G} of G and all abelian groups Λ with $|\Lambda| \geq |\Gamma|$.

Nowhere zero Γ-flows

Let \vec{G} be a directed graph and Γ be an abelian group. Then a **nowhere zero** Γ -flow for \vec{G} is an assignment of the nonzero elements of Γ to the edges of \vec{G} such that the net flow entering each vertex is zero.

Lemma (Tutte, 1950)

Let G be a graph and Γ be an abelian group. Then \vec{G} has a nowhere zero Γ -flow for some orientation \vec{G} of G if and only if \vec{G} has a nowhere zero Λ -flow for all orientations \vec{G} of G and all abelian groups Λ with $|\Lambda| \geq |\Gamma|$.

We say G has a nowhere zero Γ -flow if some (or equivalently, if every) orientation of G has a nowhere zero Γ -flow.

Nowhere zero *k*-flows

Let G be a graph and $k \geq 2$ be an integer. Then a **nowhere zero** k-**flow** for G is a nowhere zero \mathbb{Z} -flow (for some fixed orientation of G) in which each edge is assigned one of the integers $\pm 1, \pm 2, \ldots, \pm (k-1)$.

Nowhere zero *k*-flows

Let G be a graph and $k \ge 2$ be an integer. Then a **nowhere zero** k-**flow** for G is a nowhere zero \mathbb{Z} -flow (for some fixed orientation of G) in which each edge is assigned one of the integers $\pm 1, \pm 2, \ldots, \pm (k-1)$.

Lemma (Tutte, 1950)

A graph G has a nowhere zero k-flow if and only if it has a nowhere zero \mathbb{Z}_k -flow.

Duality

Lemma (Tutte, 1950)

Let G be a plane graph, G^* be its planar dual and Γ be an abelian group with $|\Gamma| = k$. Then the following statements are equivalent.

- G has a nowhere zero Γ-flow.
- *G* is *k*-face-colourable.
- G* is k-vertex-colourable.

Nowhere zero 2- and 3-flows

Lemma

A graph has a nowhere zero 2-flow if and only if it is Eulerian i.e. all vertices have even degree.

Nowhere zero 2- and 3-flows

Lemma

A graph has a nowhere zero 2-flow if and only if it is Eulerian i.e. all vertices have even degree.

It is NP-complete to decide if a graph has a nowhere zero 3-flow. (A planar graph has a nowhere zero 3-flow if and only if its planar dual is 3-vertex colourable.)

Nowhere zero 2- and 3-flows

Lemma

A graph has a nowhere zero 2-flow if and only if it is Eulerian i.e. all vertices have even degree.

It is NP-complete to decide if a graph has a nowhere zero 3-flow. (A planar graph has a nowhere zero 3-flow if and only if its planar dual is 3-vertex colourable.)

Conjecture (Tutte 1972)

Every 4-edge-connected graph has a nowhere zero 3-flow.

Nowhere zero 4-flows

It is NP-complete to decide if a graph has a nowhere zero 4-flow. (A cubic graph has a nowhere zero 4-flow if and only if it is 3-edge colourable.)

Nowhere zero 4-flows

It is NP-complete to decide if a graph has a nowhere zero 4-flow. (A cubic graph has a nowhere zero 4-flow if and only if it is 3-edge colourable.)

Theorem (Jaeger 1979)

Every 4-edge-connected graph has a nowhere zero 4-flow.

Nowhere zero 5-flows

Conjecture (Tutte 1954)

Every bridgeless graph has a nowhere zero 5-flow.

Nowhere zero 5-flows

Conjecture (Tutte 1954)

Every bridgeless graph has a nowhere zero 5-flow.

Theorem (Jaeger 1979)

Every bridgeless graph has a nowhere zero 8-flow.

Nowhere zero 5-flows

Conjecture (Tutte 1954)

Every bridgeless graph has a nowhere zero 5-flow.

Theorem (Jaeger 1979)

Every bridgeless graph has a nowhere zero 8-flow.

Theorem (Seymour 1981)

Every bridgeless graph has a nowhere zero 6-flow.

Let G = (V, E) be a graph and Γ be an abelian group. A map $b: V \to \Gamma$ is **feasible** if $\sum_{v \in V} b(v) = 0$.

Let G = (V, E) be a graph and Γ be an abelian group.

A map $b: V \to \Gamma$ is **feasible** if $\sum_{v \in V} b(v) = 0$.

The graph G is Γ -connected if, for all feasible maps $b: V \to \Gamma$, G has a nowhere zero ' Γ -flow' with the property that, for each vertex $v \in V$, the net flow into v is b(v).

Let G = (V, E) be a graph and Γ be an abelian group.

A map $b: V \to \Gamma$ is **feasible** if $\sum_{v \in V} b(v) = 0$.

The graph G is Γ -connected if, for all feasible maps $b: V \to \Gamma$, G has a nowhere zero ' Γ -flow' with the property that, for each vertex $v \in V$, the net flow into v is b(v).

Conjecture (Jaeger, Linial, Payan, Tarsi 1992)

Every 5-edge-connected graph is \mathbb{Z}_3 -connected.

Let G = (V, E) be a graph and Γ be an abelian group.

A map $b: V \to \Gamma$ is **feasible** if $\sum_{v \in V} b(v) = 0$.

The graph G is Γ -connected if, for all feasible maps $b: V \to \Gamma$, G has a nowhere zero ' Γ -flow' with the property that, for each vertex $v \in V$, the net flow into v is b(v).

Conjecture (Jaeger, Linial, Payan, Tarsi 1992)

Every 5-edge-connected graph is \mathbb{Z}_3 -connected.

Theorem (Thomassen 2012+)

Every 8-edge-connected graph is \mathbb{Z}_3 -connected (and hence has a nowhere zero 3-flow).

Let G = (V, E) be a graph and Γ be an abelian group.

A map $b: V \to \Gamma$ is **feasible** if $\sum_{v \in V} b(v) = 0$.

The graph G is Γ -connected if, for all feasible maps $b: V \to \Gamma$, G has a nowhere zero ' Γ -flow' with the property that, for each vertex $v \in V$, the net flow into v is b(v).

Conjecture (Jaeger, Linial, Payan, Tarsi 1992)

Every 5-edge-connected graph is \mathbb{Z}_3 -connected.

Theorem (Thomassen 2012+)

Every 8-edge-connected graph is \mathbb{Z}_3 -connected (and hence has a nowhere zero 3-flow).

Theorem (Thomassen, Wu, Zhang 2012+)

Every 6-edge-connected graph is \mathbb{Z}_3 -connected (and hence has a nowhere zero 3-flow).

Given a graph G and an abelian group Γ let $F_G(\Gamma)$ be the number of distinct nowhere zero Γ -flows for some fixed orientation of G.

Given a graph G and an abelian group Γ let $F_G(\Gamma)$ be the number of distinct nowhere zero Γ -flows for some fixed orientation of G.

Contraction-Deletion Lemma

Suppose e is an edge of G.

If e is a loop then $F_G(\Gamma) = (|\Gamma| - 1)F_{G-e}(\Gamma)$.

If e is not a loop then $F_G(\Gamma) = F_{G/e}(\Gamma) - F_{G-e}(\Gamma)$.

Given a graph G and an abelian group Γ let $F_G(\Gamma)$ be the number of distinct nowhere zero Γ -flows for some fixed orientation of G.

Contraction-Deletion Lemma

Suppose e is an edge of G.

If e is a loop then $F_G(\Gamma) = (|\Gamma| - 1)F_{G-e}(\Gamma)$.

If e is not a loop then $F_G(\Gamma) = F_{G/e}(\Gamma) - F_{G-e}(\Gamma)$.

We can deduce that $F_G(\Gamma)$ is the same for all abelian groups of the same order, q. We denote this number by $F_G(q)$.

Given a graph G and an abelian group Γ let $F_G(\Gamma)$ be the number of distinct nowhere zero Γ -flows for some fixed orientation of G.

Contraction-Deletion Lemma

Suppose e is an edge of G.

If e is a loop then $F_G(\Gamma) = (|\Gamma| - 1)F_{G-e}(\Gamma)$.

If e is not a loop then $F_G(\Gamma) = F_{G/e}(\Gamma) - F_{G-e}(\Gamma)$.

We can deduce that $F_G(\Gamma)$ is the same for all abelian groups of the same order, q. We denote this number by $F_G(q)$.

We can similarly deduce that $F_G(q)$ is a polynomial in q.

Given a graph G and an abelian group Γ let $F_G(\Gamma)$ be the number of distinct nowhere zero Γ -flows for some fixed orientation of G.

Contraction-Deletion Lemma

Suppose e is an edge of G.

If e is a loop then $F_G(\Gamma) = (|\Gamma| - 1)F_{G-e}(\Gamma)$.

If e is not a loop then $F_G(\Gamma) = F_{G/e}(\Gamma) - F_{G-e}(\Gamma)$.

We can deduce that $F_G(\Gamma)$ is the same for all abelian groups of the same order, q. We denote this number by $F_G(q)$.

We can similarly deduce that $F_G(q)$ is a polynomial in q.

WARNING: the number of nowhere zero q-flows is in general NOT equal to $F_G(q)$. So this notation is misleading.

Tutte's 5-flow conjecture is equivalent to saying that $F_G(q) > 0$ for all integers $q \ge 5$ and all bridgeless graphs G. Since $F_G(q)$ is a polynomial in q we can also consider its real or complex zeros.

Tutte's 5-flow conjecture is equivalent to saying that $F_G(q) > 0$ for all integers $q \ge 5$ and all bridgeless graphs G. Since $F_G(q)$ is a polynomial in q we can also consider its real or complex zeros.

Conjecture (Welsh \sim 2000)

If G is bridgeless then $F_G(q) > 0$ for all real q > 4.

Tutte's 5-flow conjecture is equivalent to saying that $F_G(q) > 0$ for all integers $q \ge 5$ and all bridgeless graphs G. Since $F_G(q)$ is a polynomial in q we can also consider its real or complex zeros.

Conjecture (Welsh \sim 2000)

If G is bridgeless then $F_G(q) > 0$ for all real q > 4.

Haggard, Pearce and Royle (2010) found counterexamples to this conjecture with 4 < q < 5 but the modified conjecture that $F_G(q) > 0$ for all real $q \geq 5$ is still open.

Tutte's 5-flow conjecture is equivalent to saying that $F_G(q) > 0$ for all integers $q \ge 5$ and all bridgeless graphs G. Since $F_G(q)$ is a polynomial in q we can also consider its real or complex zeros.

Conjecture (Welsh \sim 2000)

If G is bridgeless then $F_G(q) > 0$ for all real q > 4.

Haggard, Pearce and Royle (2010) found counterexamples to this conjecture with 4 < q < 5 but the modified conjecture that $F_G(q) > 0$ for all real $q \ge 5$ is still open.

Theorem (BJ 2003)

If G is bridgeless with n vertices then $F_G(q) > 0$ for all real $q > 2 \log_2 n$.

